-16t^2+64t-20=0

Simple and best practice solution for -16t^2+64t-20=0 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for -16t^2+64t-20=0 equation:



-16t^2+64t-20=0
a = -16; b = 64; c = -20;
Δ = b2-4ac
Δ = 642-4·(-16)·(-20)
Δ = 2816
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{2816}=\sqrt{256*11}=\sqrt{256}*\sqrt{11}=16\sqrt{11}$
$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(64)-16\sqrt{11}}{2*-16}=\frac{-64-16\sqrt{11}}{-32} $
$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(64)+16\sqrt{11}}{2*-16}=\frac{-64+16\sqrt{11}}{-32} $

See similar equations:

| -60=4(-3-4x) | | 7x+2(7x+6)=243 | | -1/4.x-2.x=9/19 | | 2/5x=36 | | 2/3x+6=1/2x-7 | | √3x+7=1+√3x-2 | | 7m/4+3/2=9m/4-8/4 | | 6x+3(6x-16)=144 | | -5(4k-2)=3k+33 | | 3(1+4x)+2=-43 | | 39/4=156/t | | 4x+5(2x-6)=124 | | 4x-21=9x-16 | | 34+7x=90 | | 3/28=h/64 | | 2x+4(4x-13)=164 | | P^2-8p-3=5 | | 180-85-60=x | | 0.25/15=0.23/x | | 7x+7(5x-10)=182 | | 34+7x=180 | | 21/q=3 | | 10-11x=12x+23 | | -3(2b+2)-3b=-42 | | 6x+4(2x+14)=140 | | 9a-6a+6a=9 | | 4(x+3)-x+9=3 | | 2/3x+6=10-1/3x | | 7k+2k-k-3k=20 | | 4(x+3)-x-9=3 | | 10-11x=12x+3 | | √x+10=2x-8 |

Equations solver categories